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approach can achieve two-orders-of magnitude improve-
ment in computational efficiency for climate simulation 
relative to a conventional symmetric multiprocessor (SMP) 
approach.

The challenge of moving high-performance computing 
architecture toward exaflops has staggering economic 
and political ramifications. The computational power re-
quired for extreme-scale modeling accurate enough to 
inform critical policy decisions requires a new breed of 
extreme-scale computers. The “A Page from Embedded 
Computing” sidebar describes the architectural philosophy 
behind Green Flash.

To test our design philosophy, we chose a truly ex-
ascale problem: kilometer-scale models of the global 
atmosphere system requiring simulations 1,000 times 
faster than real time. The kilometer-scale model decom-
poses Earth’s atmosphere into 20 billion individual cells, 
demanding a machine with unprecedented performance. 

Applying energy-efficient, embedded processors, al-
though a crucial first step, is not in and of itself sufficient 
to meet this challenge. The computing industry has ar-
rived at a rare inflection point: Fundamental principles 
of computer architecture are open to question, and new 
ideas are being explored. Green Flash not only offers a 
glimpse of how design processes that have been success-
ful in the embedded space can be applied to scientific 

T
he computational power required to accurately 
model extreme problem spaces, such as climate 
change, requires more than a business-as-usual 
approach. Building ever-larger clusters of com-
mercial off-the-shelf (COTS) hardware will be 

increasingly constrained by power and cooling—with 
power consumption projected to be hundreds of mega-
watts for exascale-class problems according to recent 
DARPA and DOE reports. It makes more sense therefore 
to leverage the considerable innovation of the low-power 
architectures developed for embedded computing mar-
kets and design a machine capable of the exaflops 
performance (1 billion-billion floating-point operations 
per second) required for this and similarly demanding 
scientific applications.

To that end, we have developed Green Flash, an appli-
cation-driven design that combines a many-core processor 
with novel alternatives to cache coherence and autotun-
ing to improve the kernels’ computational efficiency. This 
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to develop models at the limit of cumulus parameteriza-
tion validity (approximately 25 km), but the necessary 
century-scale integrations are just barely feasible on the 
largest current computing platforms. Although this in-
crease in horizontal fidelity should rectify many issues, 
the fundamental limitations of cumulus parameterization 
are likely to remain. 

For this reason, it makes more sense to simulate cloud 
processes directly rather than model them statistically. At 
a horizontal grid spacing of approximately 1 km, a model 
could resolve cloud systems individually, providing a 
direct numerical simulation. However, because numeri-
cal stability requirements impose time-step limitations, the 
computational burden of fluid dynamics algorithms scales 
nonlinearly with the number of grid points. Consequently, 
the resources to carry out century-scale simulations of 
Earth’s climate would overwhelm the capability of any 
traditional machine.

Resource requirements
In previous work,2 we estimated the resources needed 

for a resolution of approximately 1 km. To fine-tune these 
estimates, we have since partnered with David Randall’s 
group at Colorado State University (CSU) that is using a 
mesh representation of the globe with an icosahedron as 
the starting point. By successively bisecting the sides of 
the triangles making up this object, the group was able 
to generate a remarkably uniform mesh on the sphere. 
However, this is not the only way to discretize the globe at 
this resolution; a variety of independent resolving models 
are necessary to make credible projections about climate 

computing, but also addresses some of the most daunting 
problems of managing the exponential growth of on-chip-
parallelism across the entire information technology (IT) 
industry. 

MODELING EARTH’S CLIMATE SYSTEM
Current-generation climate models are comprehensive 

representations of the systems that determine Earth’s cli-
mate. Models prepared for the IPCC Fourth Assessment 
Report: Climate Change 20071 coupled submodels of the 
atmosphere, ocean, and sea ice to provide simulations of 
the past, present, and future climate. Models already being 
prepared for the next report will represent the major re-
maining climate system components—the terrestrial and 
oceanic biosphere, the Greenland and Antarctic ice sheets, 
and certain aspects of atmospheric chemistry.

Each subsystem model has its own strengths and 
weaknesses and introduces a particular amount of un-
certainty into climate projections. Current computational 
resources limit the resolution of these submodels, thereby 
contributing to the uncertainty. Resolution constraints on 
atmospheric process models, for example, do not allow 
clouds to be resolved, which means that model develop-
ers must rely on subgrid-scale parameterizations that are 
based on statistical methods. Simulations with these con-
straints produce cloud distributions that do not correlate 
well with observations. 

Such disagreements can be traced to cumulus convec-
tion parameterization. Current global atmospheric models 
have resolutions of approximately 200 km—many times 
larger than individual clouds. A few groups are attempting 

P eter Ungaro, CEO of Cray Computing, recently remarked that  
“Our current technologies can get us to the 10-20 petaflops 

range. But then to start to think about 100 [petaflops], we really need 
a major shift in technology.”1 

The high-performance computing community has long sub-
scribed to architectural specialization as the best way to boost 
efficiency, but design and verification costs and lead times have 
made the cost of creating full-custom designs impractical. Thus, to 
think about exaflops other than in the context of science fiction 
means abandoning the idea of building ever-larger clusters and 
turning to another set of proven design strategies that don’t come 
at a prohibitive cost.

In our search for a radical alternative, we turned to the  
embedded-processor market, which successfully addresses the 
custom and cost issues. The industry relies on sophisticated tool 
chains that enable the rapid and cost-effective turnaround of 
power-efficient semicustom design implementations appropriate 
to each application. 

Our design, Green Flash, leverages the same tool chains to 
design power-efficient exascale systems, tailoring embedded 
chips to target scientific applications. Rather than ask, What kind 
of scientific applications can run on our high-performance com-
puting cluster? after it arrives, we have turned the question around 

to ask, What kind of system should be built to meet the needs of 
the most important science problems? This approach lets us real-
ize the most substantial gains in energy efficiency because we 
essentially peel back the complexity of a high-frequency micro-
processor design point to reduce waste—wasted opcodes, wasted 
bandwidth, waste caused by orienting architectures toward serial 
performance. We also change the notion of commodity from that  
of component-level integration of clusters to integration of com-
modity circuit designs within a chip for a system-on-chip.

By using hardware-software cotuning, our design enables 
rapid hardware design and establishes a feedback path from 
application programmer to hardware designer. By combining an 
autotuning environment for software optimization with an emu-
lation platform based on an FPGA, we can simultaneously develop 
software optimizations and a semispecialized processor design. 
Essentially, we have not only built on proven ideas, but we have 
taken them in a new direction.

Reference
 1. G. Huang, “Cray’s Comeback: CEO Peter Ungaro on Clouds, Exa-

flops, and the Future of Supercomputing,” 30 July 2009; www.
xconomy.com/seattle/2009/07/30/crays-comeback-ceo-peter- 
ungaro-on-clouds-exaflops-and-the-future-of-supercomputing.
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the peak flops rate requirement down considerably. About 
25 Mbytes of memory would also be required per subdo-
main as would about 7,500 nearest-neighbor messages 
per second with a size of 8 to 10 Kbytes each. This last 
requirement translates to a bandwidth of about 78 Mbytes 
per second between nearest-neighbor processors. 

Designing 128 cores onto a single chip would result in 
163,840 individual sockets—numbers that were not im-
plausible. We were thus encouraged to take our strawman 
decomposition to the design stage.

DESIGN PROCESS
Because power constraints have long directed the de-

velopment of embedded architectures, we began with an 
embedded core and some of the sophisticated tool chains 
developed to minimize time from architectural specifica-
tions to the application-specific IC. We then looked at how 
we could maximize efficiency by tuning the hardware 
and software to optimize performance as well as how we 
could provide rapid design prototypes and cope with fault 
resilience.

Leveraging an embedded tool chain
The sophisticated tool chains for developing the system-

on-chip application-specific ICs popular in the embedded 
computing market give designers the flexibility to combine 
verified functional units in myriad ways to rapidly produce 
semicustom designs. To test these ideas, we adopted the 
tool chain from Tensilica,3 an embedded-design firm. The 
chain starts with a base architecture, to which a designer 
can add floating-point support to a processor or perhaps 
choose a larger cache or local store. Adding features to the 
processor core (or removing them) is as simple as clicking 
a checkbox or selecting from a dropdown menu. 

The tool then selects the unit from its library and in-
tegrates it into the design—which substantially reduces 
the writing and rewriting of the full custom logic typically 
required when changing a processor’s architecture. To help 
maintain backward and general-purpose compatibility, 
the processor’s instruction set architecture is expandable 
but must be functional enough to allow general-purpose 
code execution. The tools also allow designers to flexibly 
define application-specific extensions to the base instruc-
tion set architecture. Of course, the tools have their limits 
(a designer can’t have hundreds of read ports from a single 
memory, for example), but their flexibility vastly outweighs 
any inherent restrictions. 

Much like current high-performance computing 
designs, our approach continues to use off-the-shelf com-
ponents except at a finer grain. Rather than using entire 
off-the-shelf processors at a socket-level granularity, we 
can tailor individual functional units within a core and 
their interconnections to create a semicustom system-on-
chip (SOC) design.

change. Consequently, we wanted to be sure that Green 
Flash could run a class of global climate models, not just 
a particular model.

We originally estimated 10 petaflops as the sustained 
computational rate necessary to simulate Earth’s climate 
1,000 times faster than it actually occurs. An updated esti-
mate of the requirements for the CSU model raised that to 
as high as 70 petaflops—an example of the considerable 
uncertainty in making these estimates. As the CSU model 
matures, we expect to determine this rate even more accu-
rately. An exaflops-scale machine would provide multiple 
realizations of individual simulations, a necessary tool in 
addressing the climate system’s statistical complexities. 
The exact peak flops rate required would depend greatly 
on the machine’s potential efficiency.

A strawman decomposition
Without sufficient parallelism in the climate problem, 

these enormous sustained computational rates are not 
even imaginable. Fortunately, the CSU group has demon-
strated that the icosahedral formulation of cloud-system 
resolving models at the kilometer scale can offer plenty 
of opportunity to decompose the physical domain. Their 
decomposition bisects the triangles composing the ico-
sahedron 12 successive times, producing a global mesh 
with 167,772,162 vertices spaced 1 to 2 km apart. It is then 
possible to apply a logically rectangular two-dimensional 
domain-decomposition strategy horizontally to the ico-
sahedral grid. Choosing square segments of the mesh 
containing 64 grid points each (8 × 8) results in 2,621,440 
horizontal domains. The vertical dimension offers ad-
ditional parallelism. Assuming that we could decompose 
128 layers into eight separate vertical domains, the total 
number of physical subdomains could be 20,971,520.

Even given 20-million-way parallelism, we continued 
to pursue the strawman decomposition, keeping in mind 
the practical constraints on an SMP core’s performance. 
With a single core assigned to each subdomain, individual 
cores must be capable of a computational rate of about 3.5 
gigaflops for the icosahedral code to achieve a simulation 
1,000 times faster than real time. These rates are based on 
the computational efficiency rates of current mainstream 
rates. The efficiency gained through autotuning can bring 

To help maintain backward and 
general-purpose compatibility, the 
processor’s instruction set architecture 
is expandable but must be functional 
enough to allow general-purpose code 
execution. 



65NOVEMBER 2009

ample, demonstrated the emulation of more than 1,000 
cores using a stack of 16 BEE2 boards.7

Maximizing efficiency
Opting to follow the design philosophy that the best 

way to reduce power consumption and increase ef-
ficiency is to reduce waste, we chose an architecture 
with a very simple in-order core and no branch predic-
tion. Because the climate model’s demands for memory 
and communication are high, both aspects drive Green 
Flash’s core design. Reducing the computational burden 
through autotuning also contributes to efficiency. Finally, 
hardware-software cotuning tunes the hardware to the 
autotuned software for additional efficiency gains.

Network topology. Our experience evaluating the STI 
Cell processor4 shows that, for memory-intensive applica-
tions, cores with a local store use a higher percentage of 
the available dynamic RAM (DRAM) bandwidth. On the 
basis of these results, we decided to include a local store in 
our processor architecture. As Figure 1 shows, the design 
uses a torus network fabric with two on-chip networks. 
Predictably, most of the communication among the cli-
mate model’s subdomains is nearest neighbor. We did 

The ability to rapidly generate processor 
cores that are tailored to scientific applications 
makes these tools compelling, but the excessive 
overhead in verifying hardware and creating a 
usable software stack for each new processor ne-
gates any time saved in hardware development. 
To address this drawback, the tools generate 
optimizing compilers—test benches as well as 
a functional simulator—in parallel with the de-
sign’s register transfer logic. Constructing the 
processor with verified building blocks and auto-
matically generating test benches greatly reduce 
the risk and time spent in formal verification.

Rapid design prototyping
Traditionally, the complexity of coding in 

Verilog or VHDL versus C++ or Python and the in-
ability to emulate large designs have outweighed 
the speed and accuracy advantages of using field-
programmable gate arrays (FPGAs). However, FPGA 
use has become much more practical over the past 
decade because, unlike commercial microproces-
sors, FPGAs are not experiencing a clock-rate and 
power plateau. The lookup table count on FPGAs 
continues to increase, enabling the emulation of 
more complex designs. In addition, FPGA clock 
rates have been growing steadily, closing the gap 
between emulated and production clock rates. 
Recent advances in FPGA I/O features have made 
accessing large, dynamic memories much more 
palatable.

To accelerate the creation of prototype system designs, 
we are using the Research Accelerator for Multiple Proces-
sors (RAMP),6 an FPGA emulation platform that makes the 
hardware configuration available for evaluation while the 
actual hardware is still on the drawing board. RAMP is a 
cooperative effort among six universities to build a new 
standard emulation system for parallel processors. 

Although the steady growth in FPGA lookup table count 
has enabled the emulation of more complex designs, a 
strawman architecture of 128 cores per socket requires 
emulating more than the two or four cores that will fit on a 
single FPGA. To address this limitation, we have employed 
version 3 of the Berkeley Emulation Engine (BEE3), a board 
populated with four Virtex-5 155 FPGAs, each with two 
dedicated channels of double data rate memory, connected 
in a ring with a crossover connection. 

Using the BEE3, we effectively emulate eight networked 
cores, each running at 33 MHz. To scale beyond eight 
cores, the BEE3 includes 10-Gbit Ethernet connections, 
allowing the boards to be linked and enabling the emula-
tion of an entire socket. There is significant precedent for 
emulating massively multithreaded architectures across 
multiple FPGAs. The Berkeley RAMP Blue project, for ex-
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Figure 1. The on-chip network fabric for the Green Flash system-
on-chip. A concentrated torus network fabric yields the highest 
performance and most power-efficient design for scientific codes.
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between cores, bringing the communication overhead 
below 20 percent of the total execution time. We have 
used Tensilica’s tools to create multiple designer-defined 
ports with a simple first-in, first-out interface, and each 
port can send and receive a word-sized data packet on 
each clock. This ultra-low-overhead streaming interface 
bypasses the cache to minimize latency and connects to 
one of the on-chip torus networks. The narrow network 
is for address exchange; the wider torus network is for 
bulk data exchange using asynchronous direct memory 
access (DMA) data transfers. The address space for each 
processor’s local store is mapped into the global address 
space, and the data exchange is done as a DMA from local 
store to local store. 

From a logical programming view, all processors are 
directly connected to each other, but physically are con-
nected using a concentrated torus network to the chip’s 
2D planar geometry. To further simplify programming, 
a traditional cache hierarchy is also in place to allow the 
slow porting of codes to the more efficient interproces-
sor network. To minimize power, we are investigating the 
use of photonic interconnects for the intercore network, 
which could prove to be an efficient way of transferring 
long messages. The “Photonic Networks: A More Efficient 

additional experiments with cycle-accurate models of an 
on-chip packet-switched network to determine that a con-
centrated torus topology provides superior performance 
and energy efficiency for codes in which a nearest-neighbor 
communication pattern dominates.5 We are currently tar-
geting a core with a clock speed of 500 MHz, a 32-Kbyte 
conventional error correction code (ECC)-protected cache 
per core, and a 128-Kbyte local store. The availability of 
a conventional cache will allow code to be incrementally 
ported to use the local store. Each socket of 128 cores will 
have a 50-Gbyte-per-second interface to DRAM.

The traditional cache-coherent memory consistency 
schemes typical of most modern SMPs make fine-grained 
synchronization among cores very difficult, and greatly 
increase the amount of undesired interprocessor data 
movement. For example, to achieve our target execution 
rate on 20 million processors, we must compute on a local 
mesh size that is 8 × 8 × 10 cells. We have observed that 
the code would spend 90 percent of its time in commu-
nication if it were to run on a conventional cache-based 
hardware, due to the overhead penalty of exchanging ex-
tremely small messages between cores. 

In Green Flash, we have added specialized hardware to 
each core to enable extremely low-overhead messaging 

P ower efficiency requires reducing the power consumption of 
all system components. With these highly efficient tiny 

processing elements there is a danger that communication 
bottlenecks—both in energy and time—will result in a less 
efficient overall system. To mitigate this danger, long-term 
research requires exploring interconnect architectures that will 
both increase performance and reduce energy use. 

One promising approach is to combine 3D CMOS integration 
with research into silicon photonics to build hybrid electronic-
photonic interconnects on-chip.1,2 Designers place photonic 
detectors and emitters along with specialized low-power pho-
tonic switching elements on a special interconnect layer and 

interface them with processing elements using conventional 
electronic routers. Figure A shows how the switching elements 
work. Large-scale communications occur over photonic links, 
which have several strong advantages over electronic networks. 
Energy consumption for photonics is less dependent on signal-
ing rate and distance compared to electronics, and the photonic 
switches are much simpler as they do not require buffers or 
repeaters.

Preliminary research with messaging patterns arising from sci-
entific applications shows that such hybrid networks have the 
potential to bring major gains in efficiency, due to their lower 
power consumption combined with fast propagation speed. Early 
research studies done in collaboration with the Lightwave 
Research Laboratory at Columbia University, for example, show 
that a hybrid electronic-photonic interconnect composed of ring 
resonators can deliver 27x better energy efficiency than electrical 
interconnects alone.3

References
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PHOTONIC NETWORKS: A MORE EFFICIENT NETWORK INTERCONNECT
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Figure A. Photonic switching elements. (1) Light is coupled 
onto a perpendicular path; (2) messages propagate straight 
through. The lack of distance and complex structures are 
strong advantages over a purely electrical interconnect.
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As a demonstration of our proposed cotuning methodol-
ogy, we used the Smart Memories multiprocessor (based 
on Tensilica cores) as the target architecture and three 
widely used kernels from scientific computing—dense 
matrix-matrix multiplication, stencil codes, and sparse 
matrix vector multiplication. As part of exploring the 
hardware design space, we varied four hardware param-
eters: number of cores, whether caches are hardware- or 
software-managed, cache size per core, and total memory 
bandwidth available. 

We used tools to estimate the area and power of each 
hardware configuration that had the corresponding best 
software configuration, which we obtained through au-
totuning. As Figure 4 shows, power and area efficiencies 
improved dramatically for the three kernels.

One hindrance to practical cotuning is the large hard-
ware-software design space to be explored to tailor the 
hardware design parameters to the target applications. 
Conventional hardware design approaches use a software 
simulation of the hardware to perform this exploration. 
However, cotuning in Green Flash must explore the soft-
ware design space at each hardware design point, making 
it impractical to cotune using software simulation.

Instead, we took advantage of the Tensilica tool chain’s 
ability to create synthesizable register-transfer logic for 
any processor and, by loading this design onto an FPGA, 
we were able to emulate a potential processor design run-
ning 500 times faster than a functional simulator. With 
this speedup, designers can benchmark true applications 
rather than having to rely on representative code snippets or 
statically defined benchmarks. More important, this speed 
advantage does not come at the expense of accuracy; FPGA 
emulation is arguably much more accurate than a software 
simulation environment because it truly represents the 
hardware design. 

Network Interconnect” sidebar describes 
the advantages of this approach. 

Autotuning. Communication was 
not our only challenge in the cli-
mate model computation. Meeting 
the requirement of simulating at 
1000× real time per core in a power-
efficient design is a daunting task, so 
to optimize the code and reduce the 
computational burden, we created an 
autotuning framework that automati-
cally searches a range of optimizations 
to improve the application kernels’ 
computational efficiency. The auto-
tuner f irst systematically applies 
compiler optimizations and then uses 
domain-specific knowledge of the 
algorithm to take more aggressive 
steps, such as loop reordering, to pro-
duce optimal, but functionally equivalent, code. In this 
way, it maintains performance across a diverse set of 
architectures.

Figure 2 shows the results for the climate model. We 
ran the autotuning framework using the Tensilica archi-
tectural simulator, reducing the cache footprint and overall 
instruction count and increasing the kernel’s computational 
density. We first generated the original requirement of 3.5 
gigaflops per core using a machine that ran with approxi-
mately 5 percent efficiency. Autotuners, combined with 
hardware optimizations, will play a key role in dramatically 
increasing the efficiency of Green Flash. Through these 
combined optimizations, we expect Green Flash to realize 
a two-orders-of-magnitude increase in efficiency. 

Hardware-software codesign. Conventional approaches 
to hardware design use benchmark codes to search for a 
power-efficient architecture. However, modern compil-
ers fail to generate even close to optimal code for target 
machines, which strongly implies that a benchmark-based 
approach to hardware design does not exploit the full per-
formance potential of the architecture design points and 
can lead to possibly suboptimal hardware solutions. The 
success of autotuners proves the feasibility of generating 
efficient code using domain knowledge. Therefore, we 
created cotuning as a technique to tailor the hardware to 
autotuned software to get better energy efficiency. Using 
our autotuning technology, we can automate the explora-
tion for the optimal combination of tuned software and 
hardware in a coordinated design cycle.

As Figure 3 shows, our cotuning approach incorporates 
extensive software tuning into the hardware design pro-
cess. The autotuned software tailors the application to the 
hardware design point under consideration by empirically 
searching software implementations to find the best map-
ping of software to microarchitecture. 

Loop after reorderingLoop before reordering
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Figure 2. Effect of optimization on a single loop in the climate model. In 
addition to greatly reducing the instruction count, optimization reduced the 
cache footprint of this loop by more than 100 times. With software tuning, 
Green Flash can reduce a per-core computational requirement of 3.5 gigaflops 
to a more feasible 0.5 gigaflops.
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aggregating conventional server chips into large-scale 
systems.

Across silicon design processes with the same design 
rules, hard failure rates are proportional to the number 
of system sockets and typically stem from a mechanical 
failure. Soft error rates are proportional to the chip surface 
area—not how many cores are on a chip—and bit error 
rates tend to increase with clock rate. The Green Flash 
architecture is unremarkable in all these respects and 
should not pose challenges beyond those that a conven-
tional approach faces. 

To deal with hard errors, designers often add redun-
dant cores per chip to cover defects. An old trick in the 
memory business, the strategy is apparent in designs 
such as the 188-core Cisco Metro chip, and it is entirely 
feasible for our design as well. Moreover, Green Flash’s 
low power dissipation per chip (7 to 15W) will reduce 
the mechanical and thermal stresses that often result 
in a hard error. 

To address soft errors, we have included all the basics 
for reliability and error recovery in the memory subsys-
tem, including full ECC protection for all hierarchical 
levels. Green Flash’s low target clock frequency provides 
a lower signal-to-noise ratio for on-chip data transfers. 
Finally, to enable faster rollback if an error does occur, 
our design makes it possible to incorporate a nonvola-
tile RAM controller onto each SMP so that each node 
can perform a local rollback as needed. This strategy 

The hardware-software codesign process enables 
scientific application developers to directly participate 
in the design process for future supercomputers in an 
unprecedented way. With this fast, accurate emulation 
environment, designers can run and benchmark the actual 
climate model as it is being developed and use cotuning to 
quickly search a large design space. 

We believe that these experiments outline a path for 
bringing the concept of hardware-software codesign—al-
ready prevalent in embedded design practices—into the 
realm of supercomputing system design.

SCALING UP
This article focuses primarily on hardware and software 

design methodology. However, in considering any system 
of this scale, a myriad of system software issues come to 
the forefront, such as scalable operating systems, fault 
resilience infrastructure, and the development of entirely 
new programming models to make billion-way parallelism 
more tractable. 

Fault resilience
An important question arises when proposing a 

20-million-processor computing system: How do you 
deal with fault resilience? Although the problem is cer-
tainly not trivial, neither is it unusual. As long as the 
total number of discrete chips is not dramatically dif-
ferent, any large-scale design faces the challenge of 
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vironment that supports portability, performance, and 
correctness without exposing scientists to the details of 
the computer architecture. We think this approach can 
be scaled out to support a broad range of codes that have 
such inherent explicit parallelism.

However, not all applications will be able to express 
parallelism through simple divide-and-conquer problem 
partitioning. We are only just beginning to explore new 
asymmetric and asynchronous approaches to achieving 
strong-scaling performance improvements from explicit 
parallelism. Techniques that resemble class static dataflow 

enables much faster rollback, relative to user-space 
checkpointing.

The Blue Gene system at Lawrence Livermore National 
Laboratory uses similar fault resilience strategies and con-
tains a comparable number of sockets to Green Flash, yet 
its mean time between failures (MTBF) is 7 to 10 days8—
much longer than systems with far fewer processor cores. 
Because we tailor our architecture to the application, 
Green Flash can deliver more performance than a machine 
with a comparable number of sockets, thus reducing its ex-
posure to both hard and soft errors. It proves that carefully 
applying well-known fault-resilience techniques together 
with a few novel mechanisms that extend fault resilience, 
such as localized nonvolatile RAM checkpoints, can yield 
an acceptable MTBF for extreme-scale implementations. 

Programming model
Future hardware constraints and growth in explicit on-

chip parallelism will likely require a mass migration to new 
algorithms and software architecture that is as broad and 
disruptive as the migration from vector to parallel comput-
ing systems that occurred 15 years ago. Applications and 
algorithms will need to rely increasingly on fine-grained 
parallelism and strong scaling and support fault resilience. 

History shows that the application-driven approach 
we are using for Green Flash offers the most productive 
strategy for evaluating and selecting among the myriad 
choices for refactoring algorithms for full scientific appli-
cation codes as we move through this transitional phase. 
We are exploring novel programming models together 
with hardware support to express fine-grained parallel-
ism to achieve performance, productivity, and correctness 
for leading-edge application codes in the face of massive 
parallelism and increasingly hierarchical hardware. The 
goal of this development thrust is to create a new software 
model that can provide a stable platform for software de-
velopment for the next decade and beyond for all scales of 
scientific computing. 

We have developed direct hardware support for both 
the message passing interface (MPI) and partitioned global 
address space (PGAS) programming models to enable scal-
ing of these familiar single program, multiple data (SPMD) 
programming styles to much larger-scale systems. The 
modest hardware support enables relatively well-known 
programming paradigms to utilize massive on-chip con-
currency and to use hierarchical parallelism to enable 
use of larger messages for interchip communication. The 
icosahedral formulation of the climate problem can expose 
a massive degree of parallelism through domain decom-
position, which can use a 20-million processor computing 
system. The autotuning framework is rapidly evolving into 
a generalized code generator, which allows the program-
mer to express the solver kernels at a much higher level 
of abstraction—enabling a productive programming en-
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Figure 4. The advantages of cotuning for three kernel types 
common in scientific applications. AE and PE points denote 
configurations with highest area and power efficiencies. 
Improvements varied from 2x to 50x.
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from the smallest handheld to the largest supercomputer. 
The investment will thus be the center of a sustainable 
software-hardware universe supported by applications 
across the IT industry.

F
or the past decade, the current methodolo-
gies of message-passing interfaces and Fortran 
have adequately served the development of 
high-performance computing applications. But 
parallelism is no longer an exotic problem. It is 

an industry-wide challenge that affects everything from 
cell phones to data centers. Future hardware constraints 
and growth in explicit on-chip parallelism will require a 
mass migration to new algorithms and software architec-
ture—a migration as broad and disruptive as that from 
vector to parallel computing systems. 

Green Flash represents a radical approach that breaks 
through the slow pace of incremental change. It dem-
onstrates that application-driven computing design can 
foster a sustainable hardware-software ecosystem with 
broad-based support across the IT industry. In evolving 
Green Flash, we explored practical advanced program-
ming models together with lightweight hardware support 
mechanisms that allow programmers to use massive on-
chip concurrency. 

Green Flash has provided insights into how designers 
can evolve massively parallel chip architectures through a 
feedback path that closely couples application, algorithm, 
and hardware design. Application-driven design ensures 
that hardware design is not driven by reactions to hard-
ware constraints—reactions that ignore programmability 
and delivered application performance. Our exploration of 
the climate model allowed us to investigate questions that 
cut across all application areas and have ramifications for 
the next generation of fully general-purpose architectures. 
Ultimately, we envision an architecture that can exploit 
reusable components from the mass embedded computing 
market while improving programmability for a many-core 
design. The future building blocks of a high-performance 
computing system will serve the performance and pro-
grammability needs of the smallest high-performance, 
energy-efficient embedded system all the way to extreme-
scale machines. 

Acknowledgments
We thank Mark Horowitz and the rest of the Smart Memories 
Team of Stanford University for early support and advice. We 
thank the Berkeley Wireless Research Center for early and 
ongoing assistance with the RAMP platform. We thank Dave 
Randall’s modeling group in the Department of Atmospheric 
Science at Colorado State University for early access to their 
icosahedral model. Finally, we would like to acknowledge the 
Berkeley ParLab and the View from Berkeley discussion that 

methods are garnering renewed interest because of their 
ability to flexibly schedule work and to accommodate state 
migration to correct load imbalances and failures. 

In the case of the climate code, we can use dataflow 
techniques to concurrently schedule the physics computa-
tions with the dynamic core of the climate code, thereby 
doubling our concurrency without moving to a finer 
domain decomposition. This approach also benefits from 
the unique interprocessor communication interfaces devel-
oped for Green Flash. Successful demonstration of the new 
parallelization procedure for a range of leading extreme-
scale applications can then be utilized by other similar 
codes, accelerating development efforts for the entire field.

What’s next?
Designs that follow our approach have the potential 

to open a market demand for massively concurrent com-
ponents that can also be the building blocks for mid- and 
extreme-scale computing systems. New programming 
models must be part of a new software development eco-
system that spans all system scales so that the industry has 
a viable migration path from development to large-scale 
production computing systems. We have demonstrated the 
value of FPGA-based hardware emulation platforms, such 
as RAMP, in prototyping and running hardware prototypes 
at near-real-time speeds before they are built. Such a capa-
bility will make it possible to test full-fledged application 
code and advanced software development many years 
ahead of the hardware platform construction. 

Although machines such as Blue Gene or SciCortex have 
demonstrated the advantages of using simple, low-power 
embedded cores, our approach goes beyond these tra-
ditional designs by optimizing data movement through 
explicit message queues and software controlled memo-
ries. Relative to models such as CUDA9 (Compute Unified 
Device Architecture) and Streaming,10 our simple hardware 
support for lightweight on-chip interprocessor synchro-
nization and communication provides a straightforward 
approach to programming a massive array of proces-
sors. Rather than limit implementation to off-the-shelf 
embedded ASIC tools, we also investigated more exotic 
technologies, such as silicon photonic interconnects.

Cost is and will continue to be a critical driver in evolv-
ing new technologies. The scientific computing community 
cannot sustain the end-to-end cost of developing and main-
taining technologies that apply only to the narrow market 
of leading-edge high-performance computing systems. 
Broad-based market support is a prerequisite to make such 
an ecosystem both practical and sustainable. We believe 
that our decision to draw from the embedded computing 
industry will produce technology that reduces economic 
and manufacturing barriers to constructing computing 
systems useful to science. It will also ensure that selected 
technologies have broad market impact for everything 
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